Part 2.2 Continuous functions and their properties
v1 2019-20

Intermediate Values

Theorem 2.2.1 (Bolzano 1817) Intermediate Value Theorem

Suppose that f is a function continuous on a closed and bounded interval

[a, b].
For all v between f(a) and f(b) there exist ¢ : a < ¢ < b for which f(c) =.
Here ‘between” means f(a) < v < f(b) if f(a) < f(b), f(b) <~ < f(a)

otherwise.

Important Do get the order of the quantifiers correct, “for all” first and
“there exists” second, i.e.

Vv between f(a) and f(b) dc:a <c<band f(c)=1.

On a graph you would be starting with a point « on the y-axis and finding
a point ¢ on the z-axis which maps to it.

3]

fla)3---

Before the proof recall R is complete. This means that every non-empty
subset of R which is bounded above has a least upper bound. That is:

(ACR:A#¢pand IM :Va € A,a < M) —> lubA exists.
And the definition of lubA is that, if A = lubA then
e )\ is an upper bound: Ya € A,a < A,

e )\ is the least of all upper bounds; if u is an upper bound for A then
A< .



Alternatively

e For all 6 > 0, A — ¢ is not an upper bound for A which means Ja €
A d=d0<a<\

Proof of I V Th™ We first ‘translate and reflect” the function f. There
are two cases;

o If f(a) < f(b) then f(a) < 7 < f(b). Define g(x) = f(x) — 7, then
g(a) <0 and g(b) > 0.

o If f(a) > f(b) then f(b) <~ < f(a). This time define g(z) = v— f(x),
then again g(a) <0 and g(b) > 0.

Summing up, define

flx) =~ if f(a) < f(b)
Mﬂz{

v = [flx) it fa) > f(b).

Then g(a) <0 < g(b).

If either g(a) = 0 or g(b) = 0 the proof is finished, simply choose ¢ = a or b
respectively.

Thus we may assume that we have strict inequalities in g(a) < 0 < g(b)
and it suffices to find ¢ € (a,b) : g(c) = 0.

Consider the set
S={z¢€la,b]:g(x)<0}.

Then § # ¢ since a € S, while S C [a,b] and so S is bounded above by b.
Therefore, by the Completeness Axiom of R, there exists c € R: ¢ =1ubS.

We want to first show that ¢ € (a, b), i.e. ¢ # a or b. From the definition of
a function being continuous on a closed interval we have lim,_,,, g(z) = g(a)
and lim,_,;,_ g(x) = g(b).

Following the method of an earlier lemma we choose € = |g(a)|/2 > 0
in the definition of. lim, .. g(x) = gv(a), to find 6; > 0 such that if
a <z < a+ 0 then g(x) < g(a) /2 < 0. This means [a,a + ;) € S and so
c>a+ 0.

Similarly, choosing ¢ = g(b) /2 > 0 in the definition of. lim, ,, g(z) =
g(b), we find 02 > 0 such that if b — 02 < x < b then g(x) > ¢(b) /2 > 0. this
means all such z ¢ S and so ¢ < b — 0s.
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From these two observations we deduce that ¢ € (a, b).

Let € > 0 be given. Since ¢ is continuous at ¢ there exists § > 0 such
that if |z — ¢| < § then |g(z) — g(c)| < e. That is

c—d<z<c+d = gx)—ec<glec) <glx)+e. (1)

First, choose 1 = ¢+ d/2. Then (1) implies g(c) > g(x1) —e. Yet z1 > ¢,
an upper bound on S and so z; ¢ S, that is g(z;) > 0. Combine to get
g(c) > —e.

Next, since c—9d < ¢, the least upper bound on &, we have that ¢—4 is not
an upper bound on S, i.e. there exists some x5 € S satisfying ¢ — 6§ < x5 < c.
Then (1) implies g(c) < g(z2) +¢. Yet 25 € S implies g(z2) < 0. Combine
as g(c) < e.

Further combine to get —e < g¢(¢) < e. True for all ¢ > 0 implies
g(c)=0. [

There is a good chance you will have used this result, for example by
finding roots of a polynomial by looking for a sign change.

Example 2.2.2 Let p(z) = 2° — 622 + 112 — 6. Show that there is a zero of
this polynomial between 0 and 4. Is there a zero between 0 and 2.57

Solution p(0) = —6 and p(4) = 6sop(0) < 0 < p(4), i.e. 0is an intermediate
value between p(0) and p(4). Since p is a polynomial it is continuous so we
can apply the Intermediate Value Theorem with v = 0 to deduce that there
exists 0 < ¢ < 4 for which p(c) = 0.

Since p(2.5) = —0.375 there is no sign change between 0 and 2.5 so we
cannot apply the Intermediate Value Theorem with v = 0 to show there is
a zero in [0,2.5]. This is a weakness of this method to find roots for it is not
hard to see that = =1 is a root of p(x) in [0, 2.5]. [



In fact, from the graph you can see two roots between 0 and 2.5.

Y

Example 2.2.3 Show that for all real a,b > 0 there is a solution to asinx =
beosx in [0,7/2].

Solution in Tutorial Let f(z) = asinz — bcosxz. We see that f(0) = —b
and f(n/2) = a so f(0) < 0 < f(m/2). Since f is continuous on [0, /2]
the Intermediate Value Theorem implies there exists ¢ € (0,7/2) such that
f(c) =0, ie. asinc=bcosc. [

Example 2.2.4 (A special case of the) Fixed Point Theorem. If f :
[0,1] — [0, 1] is continuous then there exists ¢ € [0, 1] such that f(c) = c.

Solution Define g(x) = f(x) — x, a function continuous on [0, 1]. By defini-
tion 0 < f(z) <1 for all 0 <z < 1. In particular f(0) > 0 and so

9(0) = f(0) =0 >0.
Similarly, f(1) <1 so
g)y=f1)—1<1-1=0.

That is, g(1) < 0 < g(0). So apply LV.Thm to g on [0, 1] to find ¢ : g(¢) = 0,
ie. f(c) =c. [
This result should not be a surprise. Being continuous on a closed interval

the function f is ‘tied down’ at f(0) and f(1). Since these values are between
0 and 1 the graph between them has to cross the line y = z. See Figure 1.



The same result should hold with y = x replaced by any continuous

function between (0,0) and (1,1). For example see Figure 2 where y = 2.

Y Y

£(0) y=z £(0) y=a°

Figure 1: y == Figure 2: y = a3

Example 2.2.5 If f: R — [1,8] is continuous then there ezists ¢ € R such
that f(c) = 3.

Solution in Tutorial If there is a solution of f(c) = ¢* then, since 1 <
f(c) < 8 we have 1 < ¢3 < 8, i.e. 1 < ¢ < 2. This could be seen on the

graph:

/ y=f(z)

|

So we need only apply the Intermediate Value Theorem on the interval
[1,2].

1)=f(1)—1*>1—1=0since f(z) >1 for all z € [1,2].
Also g(2) = f(2) — 23 <8 —8=0since f(x) > 8 for all x € [1,2].
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Thus ¢g(1) > 0 > ¢(2), i.e. 0 is an intermediate value. Apply the Interme-
diate Value Theorem to g on [1,2] with v = 0 to show there exists ¢ € [1, 2]
such that g(c) = 0, that is, f(c) = . [ |



Bounded Functions

Definition 2.2.6 A function f is said to be bounded on the interval [a,b]
if there exist numbers L and U such that L < f(x) < U for alla < x < b.
That is

AL, U eR:Vz€a,b],L < f(zx) <U.

Alternatively, there exists M > 0 such that |f (x)] < M for alla <z <b

1.€.

AM e R:Vx € [a,b],|f(z)| < M.

A function f is said to attain its lower bound on the interval [a,b] if
there exists ¢ € [a,b] such that f(c) < f(x) for alla <z <b, i.e

de € fa,b] : Vo € [a,b], f(c) < f(x).

A function f is said to attain its upper bound on the interval [a,b] if
there ezists d € |a,b] such that f(x) < f(d) for alla <x <D, i.e

3d € [a,b] : Vx € [a,b], f(d) > f(z).

Recall that we previously stated, without proof, that

e lim, ,, f(x) = L if, and only if, f(y,) — L as n — oo for all sequences
{Yn}ns1 with y, # a for alln > 1 and y, — a as n — oo.

Because f is continuous at a if, and only if, lim,_,, f(x) = f(a) we get

e f is continuous at a iff f(y,) — f(a) as n — oo for all sequences {y,},,
with y, — a as n — oo.
(There is no need to exclude y,, = a since f is defined at a.)

We will make use of sequences to prove a boundedness result but first we
need an important result from the theory of sequences.

Definition 2.2.7 Given a sequence a subsequence remains after deleting
elements from the sequence.

Thus given a sequence {r,},-, a subsequence is denoted by {zn, },-,

where 1 < n; < ng < nz < .... So ng is the k-th term remaining after some
terms have been removed from the original sequence. If none of the first k&
terms are removed than n, = k. If any of the first k terms had been removed
than n; > k. Hencen, > kforall k> 1.



Theorem 2.2.8 The Bolzano- Weierstrass Theorem (1817) A bounded
sequence of real numbers has a convergent subsequence.

Proof not given in lectures. It was also stated without proof in MATH10242.
But see the Appendix. [ |

Theorem 2.2.9 A function continuous on a closed, bounded interval, |a,b],
18 bounded.

Proof by contradiction. The definition of bounded on an interval is
AM >0,Vz:a<z<b = |f(z)| < M.
The negation of this is
VM >0,3z:a <z <band |f(z)| > M. (2)
(Recall from truth tables that we have the logical equivalence
not (p = ¢) = p and (not q)

for propositions p and ¢.)
We assume (2) for contradiction and apply it repeatedly with M = n € N,
to find points z,, : a < x,, < b and |f(z,)| > n.

We thus get a sequence {z,},, -

The points of this sequence satisfy a < x,, < b, and so it is a bounded
sequence. Thus by the Bolzano-Weierstrass Theorem it has a convergent
subsequence {z,, },~,. Let ¢ be the limit of this sequence, i.e.

c= lim z,,.
k—ro0

Then a < ¢ < bsince a < z,, <bforall k> 1. Since f is continuous on
[a, b] we have, as noted above, that

lim f(z,,) = f(c). (3)

k—o0

But, by definition of the sequence, we have

|f ()] > 1, (4)

while nj, > k for all £ implies that n, — oo as k — oo. So (4) tells us
that {f(xn,)}, is an unbounded sequence, i.e. it diverges, while (3) tells us

converges to a finite value, f(c). This contradiction means our assumption
is false and thus f is bounded. [ |

Can we remove any of the assumptions in the Theorem and still deduce
that f is bounded?



Example 2.2.10 f(z) = 1/z on (0,1] is continuous but not bounded.
So it is important in Theorem 2 that the interval [a, b] is closed.
Example 2.2.11 f(z) =z on [1,00) is continuous but not bounded.

So it is important in Theorem 2 that the interval [a, b] is bounded.

To sum up, f continuous on a

closed and bounded interval = f is bounded,
closed interval =% f is bounded,
bounded interval =& f is bounded.

Given that a continuous function on a closed interval is bounded the proof
we give that it attains its bounds depends on a TRICK.

Theorem 2.2.12 Suppose that f is a function continuous on a closed and
bounded interval |a,b]. Then there exist c,d € |a,b] such that

fle) < fx) < f(d)
for all x € [a,b).

So the upper and lower bounds for f are attained at x = d and x = ¢ and
we can talk about the maximum and minimum values of f.

Proof Since f is a function continuous on a closed interval [a, b] it is bounded
by the previous Theorem, and thus the set of real numbers { f(z) : a < x < b}
is bounded. Since this set is non-empty the Completeness axiom implies that
the set has a least upper bound. Let

M =lub{f(x):a <z <b},

so f(x) < M for all a <z <b.

Assume for a contradiction that M is not attained, i.e. f(x) < M for all
a <z <b. Then M — f(x) > 0 in which case

1
g(z) == M= (@)
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is well-defined on [a, b]. By the rules for continuous functions g is continuous
on [a,b]. Hence, by the previous Theorem, ¢ is bounded above. That is,
there exists K > 0 say, such that

1
- <K
M — f(x)
for all @ < x < b. This rearranges to give
1
<M-—
OESIEES

forall a <z <b,ie. M —1/K is an upper bound for {f(z):a < x < b}.
But this contradicts the fact that M is the least of all upper bounds for this
set. Thus our assumption is false, i.e. M is attained. That is, there exists
d € [a,b] such that

f(d) =M > f(z)

for all x € [a,b], since M is an upper bound for f on [a,b].

I leave it to the student (and the tutorial) to show that the greatest
lower bound of f on [a, b] is attained.
[

Combining the last two results and we have

Theorem 2.2.13 Boundedness Theorem (1861) A function continuous
on a closed, bounded interval, |a,b], is bounded and attains its bounds. M

In fact, if f is continuous on a closed interval [a, b] then f takes on every
value between the maximum and minimum values of f, a result not proved
in this course. In other words the image set f([a,b]) is a closed interval
[f(e), f(k)] or, more succinctly, “the continuous image of a closed interval is
a closed interval”.

Maximum
value = f(d)

Minimum
value = f(c)

c d
Note It is important for these last two results that we have f is continuous,

the domain, [a, b], is closed, and the domain, [a,b], is bounded. If any of these
three conditions fail to hold the conclusion may well not hold.
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